MAT 319 Foundations of Analysis - Midterm II with solutions
 4/10/2003

Problem 1: (a) State carefully the intermediate value theorem. SOLUTION: Let f be a continuous function on the closed interval $[a, b]$. The function assumes every value between $f(a)$ and $f(b)$.
(b) Let f be a continuous function whose domain and range are the closed interval $[0,1]$. Show that there exists an $x \in[0,1]$ such that $f(x)=x$.
HINT given during the examination. Draw graphs of possible functions f and the function $g(x)=x$ on $[0,1]$.
SOLUTION: The function $h(x)=x-f(x)$ is continuous on $[0,1]$, ≤ 0 at 0 and ≥ 0 at 1 . Hence by the intermediate value theorem there is an $x \in[0,1]$ such that $h(x)=0$.

Problem 2: (a) Let f be a function defined in an open interval containing the point a. Define what it means for f to be differentiable at a.
SOLUTION: The function f is differentiable at a if and only if $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ exists.

Let $f(x)=\left\{\begin{array}{cl}x^{2} \sin \left(\frac{1}{x}\right) & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{array}\right.$.
(b) Is f differentiable at 0 . If yes, compute $f^{\prime}(0)$; if not, explain why?

SOLUTION: The function is differentiable at 0 because $\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=$ $h \sin \frac{1}{h}=0$.
(c) Is f differentiable at $a \neq 0$. If yes, compute $f^{\prime}(a)$; if not, explain why?
SOLUTION: The function is differentiable at $a \neq 0$ because it is obtained from functions that are differentiable through multiplication and composition. By the chain and product rule

$$
f^{\prime}(a)=a^{2}\left(\cos \frac{1}{a}\right)\left(-\frac{1}{a^{2}}\right)+2 a \sin \frac{1}{a}=2 a \sin \frac{1}{a}-\cos \frac{1}{a}
$$

Problem 3: (a) State Rolle's theorem.
SOLUTION: If f is a continuous function on the closed interval $[a, b]$, differentiable on the open interval (a, b), and $f(a)=0=f(b)$, then there exists a point $c \in(a, b)$ such that $f^{\prime}(c)=0$.
(b) State the second form of the fundamental theorem of calculus.

SOLUTION: Let f be a continuous function on the closed interval $[a, b]$ and define $F(x)=\int_{a}^{x} f$ for $x \in[a, b]$. Then F is differentiable on $[a, b]$ and $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$.
(c) We have defined $\log (x)=\int_{1}^{x} \frac{d t}{t}$ for $x>0$. Use partitions of $[1,2]$ into intervals of equal length to show - you need not do the calculations - that you can estimate $\log (2)$ to three decimal places.

SOLUTION: We are integrating the function $g(x)=\frac{1}{x}$ and we need to compute $\int_{1}^{2} g$. Let P be the partition of $[1,2]$ into n intervals of equal length $\frac{1}{n}$: $\left\{1,1+\frac{1}{n}, 1+\frac{2}{n}, \ldots, 2\right\}$. Because g is a decreasing function, $U(P, g)=\frac{1}{n} \sum_{j=0}^{n-1} \frac{1}{1+\frac{j}{n}}$ and $L(P, g)=\frac{1}{n} \sum_{j=1}^{n} \frac{1}{1+\frac{j}{n}}$. We know that $L(P, g)<\log 2<U(P, g)$ and that $U(P, g)-L(P, g)=\frac{1}{n}\left(1-\frac{1}{2}\right)=\frac{1}{2 n}$. For n sufficiently large (say $n=N$) this difference is less than .0005 ; producing 3 place accuracy for $\log 2$ by estimating $\log 2$ as any value between $L(P, g)$ and $U(P, g)$ for the partition P into N intervals.

Problem 4: (a) Let n be a positive integer. Compute the n-th derivative $f^{(n)}$ for the function $f(x)=\log (x)$ defined in the previous problem.
SOLUTION: We have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x} \\
f^{\prime \prime}(x) & =-\frac{1}{x^{2}}, \\
f^{\prime \prime \prime}(x) & =\frac{1 \cdot 2}{x^{3}},
\end{aligned}
$$

and for arbitrary $n \in \mathbb{Z}_{>0}$,

$$
f^{(n)}(x)=(-1)^{n-1} \frac{(n-1)!}{x^{n}} .
$$

The first calculation is justified by the fundamental theorem of calculus, the remaining ones by the usual rules of differentiation. Formally an induction proof is required.
(b) What is the n-th Taylor polynomial $p_{n, 3}(x)$ for f at 3 .

SOLUTION:
$p_{n, 3}(x)=\log 3+\frac{1}{3}(x-3)-\frac{1}{2} \frac{1}{3^{2}}(x-3)^{2}+\frac{1}{3} \frac{1}{3^{3}}(x-3)^{3}+\ldots+(-1)^{n-1} \frac{1}{n} \frac{1}{3^{n}}(x-3)^{n}$.
(c) Give any formula for the remainder term $r_{n, 3}(x)=f(x)-p_{n, 3}(x)$.

SOLUTION: Probably the most useful of the 3 formulae is

$$
r_{n, 3}(x)=(-1)^{n} \frac{1}{n+1} \frac{1}{c^{n+1}}(x-3)^{n+1}
$$

for some c with $3 \leq c \leq x$.
(d) Find an upper bound for $r_{4,3}(5)$.

SOLUTION:

$$
\left|r_{4,3}(5)\right| \leq \frac{1}{5} \frac{2^{5}}{3^{5}}
$$

Problem 5: True or false: (Circle the correct answer and justify it by quoting a theorem or proving a True statement and giving a counter example to a False statement.)

T $\mathrm{F} \quad$ (a) Every continuous function is differentiable.
T F (b) Every integrable function is continuous.
T F (c) Every bounded sequence converges.
T F (d) Every bounded set of reals has a maximum.
T F (e) Every 4-th degree polynomial has at least two roots.
SOLUTION: (a) False. A counterexample is provided by $f(x)=|x|$ which is not differentiable at 0 .
(b) False. A counterexample is provided by any step function.
(c) False. A counterexample is provided by $\left\{(-1)^{n}\right\}_{n=1}^{\infty}$.
(d) CLARIFICATION provided during examination. The term "has" is the same as "contains" in this context.
False. A counterexample is provided by $[0,1)$.
(e) False. A counterexample is provided by $p(x)=x^{4}+1$.

