
MAT 319 Foundations of Analysis – Midterm II
with solutions

4/10/2003

Problem 1: (a) State carefully the intermediate value theorem.
SOLUTION: Let f be a continuous function on the closed interval
[a, b]. The function assumes every value between f(a) and f(b).

(b) Let f be a continuous function whose domain and range are the
closed interval [0, 1]. Show that there exists an x ∈ [0, 1] such that
f(x) = x.
HINT given during the examination. Draw graphs of possible func-
tions f and the function g(x) = x on [0, 1].
SOLUTION: The function h(x) = x − f(x) is continuous on [0, 1],
≤ 0 at 0 and ≥ 0 at 1. Hence by the intermediate value theorem there
is an x ∈ [0, 1] such that h(x) = 0.

Problem 2: (a) Let f be a function defined in an open interval con-
taining the point a. Define what it means for f to be differentiable at
a.
SOLUTION: The function f is differentiable at a if and only if

limh→0
f(a+h)−f(a)

h
exists.

Let f(x) =

{
x2 sin

(
1
x

)
for x 6= 0

0 for x = 0
.

(b) Is f differentiable at 0. If yes, compute f ′(0); if not, explain why?

SOLUTION: The function is differentiable at 0 because limh→0
f(h)−f(0)

h
=

h sin 1
h

= 0.

(c) Is f differentiable at a 6= 0. If yes, compute f ′(a); if not, explain
why?
SOLUTION: The function is differentiable at a 6= 0 because it is
obtained from functions that are differentiable through multiplication
and composition. By the chain and product rule

f ′(a) = a2

(
cos

1

a

) (
− 1

a2

)
+ 2a sin

1

a
= 2a sin

1

a
− cos

1

a
.

1



2

Problem 3: (a) State Rolle’s theorem.
SOLUTION: If f is a continuous function on the closed interval [a, b],
differentiable on the open interval (a, b), and f(a) = 0 = f(b), then
there exists a point c ∈ (a, b) such that f ′(c) = 0.

(b) State the second form of the fundamental theorem of calculus.
SOLUTION: Let f be a continuous function on the closed interval
[a, b] and define F (x) =

∫ x

a
f for x ∈ [a, b]. Then F is differentiable on

[a, b] and F ′(x) = f(x) for all x ∈ [a, b].

(c) We have defined log(x) =
∫ x

1
dt
t

for x > 0. Use partitions of [1, 2]
into intervals of equal length to show – you need not do the calculations
– that you can estimate log(2) to three decimal places.
SOLUTION: We are integrating the function g(x) = 1

x
and we need

to compute
∫ 2

1
g. Let P be the partition of [1, 2] into n intervals of

equal length 1
n
: {1, 1 + 1

n
, 1 + 2

n
, ..., 2}. Because g is a decreasing func-

tion, U(P, g) = 1
n

∑n−1
j=0

1

1+ j
n

and L(P, g) = 1
n

∑n
j=1

1

1+ j
n

. We know that

L(P, g) < log 2 < U(P, g) and that U(P, g)−L(P, g) = 1
n

(
1− 1

2

)
= 1

2n
.

For n sufficiently large (say n = N) this difference is less than .0005;
producing 3 place accuracy for log 2 by estimating log 2 as any value
between L(P, g) and U(P, g) for the partition P into N intervals.

Problem 4: (a) Let n be a positive integer. Compute the n-th deriva-
tive f (n) for the function f(x) = log(x) defined in the previous problem.
SOLUTION: We have

f ′(x) =
1

x
,

f ′′(x) = − 1

x2
,

f ′′′(x) =
1 · 2
x3

,

and for arbitrary n ∈ Z>0,

f (n)(x) = (−1)n−1 (n− 1)!

xn
.
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The first calculation is justified by the fundamental theorem of calcu-
lus, the remaining ones by the usual rules of differentiation. Formally
an induction proof is required.

(b) What is the n-th Taylor polynomial pn,3(x) for f at 3.
SOLUTION:

pn,3(x) = log 3+
1

3
(x−3)−1

2

1

32
(x−3)2+

1

3

1

33
(x−3)3+...+(−1)n−1 1

n

1

3n
(x−3)n.

(c) Give any formula for the remainder term rn,3(x) = f(x)− pn,3(x).
SOLUTION: Probably the most useful of the 3 formulae is

rn,3(x) = (−1)n 1

n + 1

1

cn+1
(x− 3)n+1,

for some c with 3 ≤ c ≤ x.

(d) Find an upper bound for r4,3(5).
SOLUTION:

|r4,3(5)| ≤ 1

5

25

35
.

Problem 5: True or false: (Circle the correct answer and justify it by
quoting a theorem or proving a True statement and giving a counter
example to a False statement.)

T F (a) Every continuous function is differentiable.
T F (b) Every integrable function is continuous.
T F (c) Every bounded sequence converges.
T F (d) Every bounded set of reals has a maximum.
T F (e) Every 4-th degree polynomial has at least two roots.

SOLUTION: (a) False. A counterexample is provided by f(x) = |x|
which is not differentiable at 0.

(b) False. A counterexample is provided by any step function.

(c) False. A counterexample is provided by {(−1)n}∞n=1.
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(d) CLARIFICATION provided during examination. The term “has”
is the same as “contains” in this context.
False. A counterexample is provided by [0, 1).

(e) False. A counterexample is provided by p(x) = x4 + 1.


